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Agenda

1. Trace data in Game-based Assessments 

2. Predicting g with GBA game scores (prior work)

3. Predicting g with GBA trace data (present study)



Trace Data & Game-based Assessments

• GBAs produce two types of data reflecting in-game 

behaviors as indicators of KSAOs

1. Game Score: resulting from planned measurement 

approach

2. Trace Data: micro-behavioral data points typically used 

for system monitoring and debugging



Predicting g with Game Scores
Revelian’s Cognify

• GBA with a series of mini games designed to target 

specific cognitive abilities

• Game score composite for general intelligence



Predicting g with Game Scores
• Previous validation study supports this link (Landers, 

Armstrong, Collmus, Mujcic, & Blaik, 2017)

– 530 undergraduate students in semi-controlled 

environment

• Improved motivational and attitudinal reactions for GBA 

(ds ranging from .106 - .814)

• Construct validity evidence: latent g       latent game 

performance (r = .968)



Predicting g with Trace Data

• Is trace data untapped potential for improving 

construct measurement and predicting criteria?

– Greater range of behaviors

– But, log files can be big, messy, and tricky to derive 

meaning from

– Requires data science techniques: feature engineering & 

modern prediction methods



Feature Engineering

• Raw Trace data (from previous study):

– 3 GB 

– ~ 13 million rows (~26 k/participant)

– Structured by event & time stamp



Feature Engineering & Selection

• Top-down (theory-driven) and bottom-up (data mining 

and machine learning) approach

– SMEs examined log dataset 

– Machine learning models with feature selection



Feature Engineering

• Engineered Features: 65

• A few examples:

– Time spent/game or /round

– Average # of clicks/game

– # of rotations (game 

specific)

– # of words selected (game 

specific)



Predicting g: Modeling Approach

• Use-cases for modern prediction methods (e.g., 

machine learning) in social science (Putka, Beatty & Reeder, 

2017)

• lack of comprehensive theory

• a need to balance model complexity with parsimony

• predictors occur on a variety of measurement scales

• high degree of uncertainty in the model selection process

• Working with trace data involves all of these 



Predicting g: Modeling Approach
• R’s Caret Machine Learning Package (Kuhn, 2014)

– k-fold cross-validation (for tuning model parameters)

– Training & holdout split (to calculate validity estimates)

• Models: *Putka, Beatty & Reeder (2018) provides an overview of each of these models

Elastic Net

Regularized 
regression 

(ridge & lasso)

Random Forest

Regression 
trees with 

bootstrapped 
sampling & 

random subset 
of predictors

Gradient 
Boosted Trees

Regression 
trees with a 

forward step-
wise-like 

regression 
component

Support Vector 
Machines

Robust 
regression 

variant, focused 
on predicting 

difficult to 
predict cases



Findings

Predicting g (from traditional measures) using GBA 

trace data 
Model Validity

Elastic Net 0.605

Random Forest 0.693

Gradient Boosted Trees 0.683

Support Vector Machines 0.630

Note: Validity refers to the correlation between the predicted g score from each 

machine learning model and the composite g score from the holdout sample.



Findings

Predicting g (from traditional measures) using GBA 

composite game score 

Model Validity

OLS Regression 0.633

Note: Validity refers to the correlation between the predicted g score from OLS 

Regression model and the composite g score from the holdout sample.



Findings
Predicting g using GBA trace data

Model Top “Important” Variables

Elastic Net • number of Timeout Rounds in Short Circuit game

• time spent on make a splash and short circuit games

• missed choices in quick comparison game

Random Forest • time spent on short circuit game

• total time spent per round on balloon blast game

• time spent on make a splash game

Gradient 

Boosted Trees

• total time spent per round on balloon blast game

• time spent on make a splash and short circuit games

• Time spent on quick comparison game tutorial

Support Vector 

Machines

• time spent on short circuit game

• time spent on short circuit tutorial

• total time spent per round on balloon blast game



Findings
Predicting GPA: incremental validity of trace data 

(predicted g) over game score composite

Elastic Net 
Regressions of GPA on Comparisons of Hierarchically Nested Regression Models

Comparison to Model 3

Model R2 F df p ΔR2 F df p

Model 1: Game Score 

Composite

.027 13.98 1, 509 < .001 0.00 0.02 1,509 .891

Model 2: Trace Data Score .018 9.27 1,509 .002 0.01 4.52 1,509 .032

Model 3: Model 1 + Model 2 .027 6.986 2,508 .001



Findings
Predicting GPA: incremental validity of trace data 

(predicted g) over game score composite

Random Forests
Regressions of GPA on Comparisons of Hierarchically Nested Regression Models

Comparison to Model 3

Model R2 F df p ΔR2 F df p

Model 1: Game Score 

Composite

.027 13.98 1, 509 < .001 0.01 6.63 1,509 .010

Model 2: Trace Data Score .039 20.59 1,509 < .001 0.00 0.20 1,509 .653

Model 3: Model 1 + Model 2 .039 10.38 2,508 < .001



Findings
Predicting GPA: incremental validity of trace data 

(predicted g) over game score composite

Gradient Boosted Trees
Regressions of GPA on Comparisons of Hierarchically Nested Regression Models

Comparison to Model 3

Model R2 F df p ΔR2 F df p

Model 1: Game Score 

Composite

.027 13.98 1, 509 < .001 0.00 0.22 1,509 .636

Model 2: Trace Data Score .022 11.48 1,509 < .001 0.005 2.67 1,509 .103

Model 3: Model 1 + Model 2 .027 7.09 2,508 < .001



Findings
Predicting GPA: incremental validity of trace data 

(predicted g) over game score composite

Support Vector Machines
Regressions of GPA on Comparisons of Hierarchically Nested Regression Models

Comparison to Model 3

Model R2 F df p ΔR2 F df p

Model 1: Game Score 

Composite

.027 13.98 1, 509 < .001 0.013 6.84 1,509 .009

Model 2: Trace Data Score .040 21.00 1,509 < .001 0.00 0.02 1,509 .881

Model 3: Model 1 + Model 2 .040 10.49 2,508 .009



Summary of findings 

• Trace data (from this GBA) can be used to predict 

composite g (avg hold-out sample r = .65)

• Across models, some features were consistently 

weighted more heavily

• Evidence of some incremental validity when predicting 

GPA, depending on modeling approach

– Machine learning model changes construct measurement



Conclusions & Future Directions

• Trace data vs. Game Score Composite

• Infinite number of features and modeling approaches

• Trace data-related findings are generally context 

dependent and data-driven, limiting generalizability

• Research opportunities are abundant

– Why are some models better than others?

– Inductive & data driven benefits?



Thank you!

Contact information:

Elena Auer

auer0027@umn.edu
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Correlation Matrix

Variable 1 2 3 4 5 6

1. Game Score (composite) 1

2 . g (composite) .63 1

3. GPA .16 .20 1

4. Predicted g from trace data (GLMNET) .84 .62 .13 1

5. Predicted g from trace data  (RF) .77 .91 .20 .77 1

6. Predicted g from trace data (GBM) .84 .69 .15 .86 .85 1

7. Predicted g from trace data (SVM Radial) .84 .77 .20 .82 .90 .87


